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Motivation

= Increase interest in multi-functional, structural composites

® Demand for smart structures with superior mechanical
and functional properties

e Importance of weight savings

= Nanofiber/cement composites 7 LN
® Expected to improve mechanical properties Carbon nanofibers

e Additional “smart” properties: electromagnetic
field shielding, self-sensing capabilities, self control of cracks

e Key aspects: proper dispersion and degree of interfacial interaction
between the carbon nanofibers (CNFs) and the cement phases

Need for understanding the mechanisms of action of CNFs in
cement pastes and the impact of their long-term use
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Nano-Reinforcement/Cement Interface
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Research Objectives

= Determine the effect of surface treatment and admixture
addition on the incorporation of CNFs in cement
composites

= Determine the effect of decalcification on the interface
between CNFs and cement phases

= Tnvestigate how microstructural and morphological
alteration of the cement paste due to decalcification
affects the role of the CNFs and in turn the macroscale
properties of the material



Materials

Two types of cement pastes
e Portland cement (PC)
e Portland cement with 10 wt.% silica fume (SF)
Carbon nanofiber (CNF) size
® ~75-150 nm dia., 100-300 pm long

Surface treatment: HNO,
Mix design

® CNF loadings: 0 and 0.5 wt%

e \Water/cementitious material: 0.33
Specimens

® (Cylinders — 2in dia. x 4in height

® Curing — 28 days minimum, room temperature, 100% RH




Microstructure Studies
CNF/Portland Cement Composites
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Microstructure Studies
CNF/Cement Composites

Composites Science and Technology, 69 (2009) 1310-1318
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= Tndividual CNFs well anchored inside of hydration products
= Silica fume facilitated CNF dispersion



Microstructure Studies
CNF/Portland Cement Composites

Surface
treatment

= CNFs found acting as bridges between hydrates
= Surface coating on CNFs



Interface Studies

Molecular Dynamics Modeling
J. of Colloid and Interface Science, 323 (2008) 349—-358
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= H-bond network developed across the interface, bridging
the structures

= Optimal number of O-containing groups required for
efficient graphitic structure/cement interaction



Macroscopic Property Studies
CNF/Cement Composites
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Durability Studies

= \Water absorption studies

" Decalcification studies
® 7M NH,NO; solution

® Accelerates calcium leaching by formation
of Ca(NO;),

® |iquid-to-Surface ratio = 5 mL/cm?
® Immersion: 7, 30 and 95 days - No renewal

= Material characterization

® Mineralogical changes

- Solid phase mineralogy and element mapping
of leached cement pastes

® Microstructural changes
® Mechanical performance effect




Water Absorption Capacity
CNF/Cement Composites
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= PC paste — CNF pockets hydrophobic (Gore-Tex effect)
= SF paste — CNF pockets hydrophilic (C-S-H coating)



Mass Loss and Penetration Depth
CNF/Cement Composites
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= Greater mass loss for PC pastes
= Greater visual degraded depth for SF pastes
= Greater visual degraded depth with CNFs

e Influence of volume fraction of CNF pockets (~13% and 3%)



Element Mapping (LA-1CP-MS)
CNF/Portland Cement Composite
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= Visual degraded depth did not provide complete
delineation of degraded state of the paste

= “Sound zone” altered



Mineralization of CNF Pockets
CNF/Portland Cement Composite
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= CNF pockets acted
as sink for Ca, Si, Al

= Impregnated CNF meshwork
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Compressive strength (MPa)

Mechanical Effect of Decalcification
CNF/Cement Composites
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No residual effect of CNFs on ultimate compressive
strength



Mechanical Effect of Decalcification
CNF/Portland Cement Composites
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= Decalcification resulted in a change in failure mode from
brittle cracking to slow ductile load dissipation



Conclusions

SF and surface treatment with HNO; facilitated CNF dispersion
and improved interfacial interaction

Unchanged compression and tensile strengths with CNFs but
residual load-bearing capacity post failure

Hydrophobic/hydrophilic effect of CNF pockets

Important role of CNF pockets in the decalcification process
e Kinetics of degradation affected by volume fraction of CNF pockets
® CNF pockets acted as sink for Ca, Si, Al

Decalcification changed the failure mode from brittle cracking to
slow ductile load dissipation, which was more pronounced for
the PC paste with CNFs

MD a useful technique for understanding interfacial interaction
between cement phases and reinforcing structure
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